Samstags-Forum Regio Freiburg

Samstag 6.Dez.2008

10:15–12:30 Uhr Green City Teil 5 BioEnergie-Dörfer & -Stadtteile

Vorträge in Universität Freiburg, Stadtmitte, Kollegiengeb. 1 Hörsaal 1015 gegenüber Uni-Bibliothek*

BioEnergie-Dörfer in D & B-W Wettbewerb BioEnergiedörfer

Joachim Merkle, Ledjo renewable Deutschland Frbg.

BioEnergie-Dorf Hägelberg Kreis Lörrach

Manfred Ruf, IG "Energie aus Bürgerhand Hägelberg"

Nachhaltige Biomassenutzung?

7 BioEnergie-Stadtteile in FR?

Dr. Georg Löser, Vorsitzender ECOtrinova e.V.

BioEnergie-Region: 100

BioEnergie-Dörfer in Südbaden?

Rainer Schüle, Energieagentur Regio Freiburg

Führung** 13:10 Oberried. Biogasanlage Winterberg. BHKW mit Nahwärme. Josef Lauby, Oberried

* Eintritt frei. Mit ÖPNV Straßenbahn-Halte Stadttheater, Bertoldsbrunnen ** Zur Führung Anmeldung erford. bis 4.12.08 s.u.

Schirmhermin Umweltbürgermeisterin G. Stuchlik, Freiburg, Veranst.; ECOtminova e.V., u-asta Univ. Umweltreferat ideell mit FSn Geohydro, Physik, Biologie und Forst sowie Inst. Physische Geographie und Forstökonomie Universität, Agenda 21 Büro Freiburg, Architektenkammer B-W Freiburg + Brsg-Hochschww., AFB Arbeitsgem. Freiburger Bürgervereine e.V., Klimabündnis u. BUND Freiburg, Energieagentur Regio Freiburg, fesa e.V., Energie-3Regio, Badisch-Elsäss. BIs., AK Wasser im BBU e.V., FIUC e.V. Kontokt; ECOtminova eV/Dr. Löser, Treffpunkt FR Schwarzwstr. 78 d., T0761-2168730, ecotminova@web.de

Nachhaltigkeitskriterien für Biomasse-Energie

und

BioEnergie-Stadtteile für Freiburg?

Dr. Georg Löser Samstags-Forum Regio Freiburg 6.12.2008

Kriterien Biomasse-Energie vorschlag

- 0. Voraussetzung: Die Ernährung ist zu gewährleisten!
- Landwirtschaft/Gartenbau/Haus-/+Schrebergärten
- 1. Priorität : nichtenergetische Nutzung
- Wärmedämmung aus Biomasse, Bau-/Strukturmaterialien, Chemikalien: Bioraffinerien
- Motto: Dämmen statt Verheizen
- 2. Priorität : KWK mit Reststoffen und Abfällen
- dringend erforderlich f
 ür regeneratives Strom-System:
- Grundlast- + Ausgleichsfunktion für Wind- und Solarstrom, s.a. <regen. Kombikraftwerk> 2008)
- Voraussetzungen: z.B. Nahwärme, gewerbliche Wärmeverwertung
- 3. Priorität: Biomethan + begrenzt Kraftstoffe Landw., Komm, ÖPNV
- Hierzu eine Reihe von Bedingungen an die Ökologie und Anwendungs-Energie-Effizienz!
- 4. möglichst nicht: nur Heizen !!!
- Warum nicht: Verheizen falsch wegen hoher Exergie (Arbeits- und Stromerzeugungsfähigkeit) der Biomasse)
- Ausweg: KWK mit guter Stromkennzahl bzw. gutem el. Wirkungsgrad
- Ausnahme: Einzelhöfe und -Gebäude im ländl. Raum, Kombi mit Solarwärme, Holz als Winter-Restenergie
- Ausnahme: derzeitige Situation mit Biomasse-Überschuß bei Wald-Holz, später zu KWK umrüsten
- Regel: Die Biomasse nicht für minderwertige Zwecke wie Heizen verwenden,
- sondern nur für hochwertige Aufgaben Exergie-gerecht einsetzen

Kriterien Biomasse-Energie Fortsetz.

- Ökologischer Landbau, naturnaher Land- u. Waldbau Integrierter Pflanzenschutz ??
- Bodenschutz: Humus, Giftfreiheit, Erosionsschutz....
- Artenvielfalt, Mischkulturen auch: Synergien Naturschutz-BioEnergie erzeugen: Landschaftspfl.
- Gute Energie- und Treibhausgasbilanz
- Stoffkreisläufe lokal-regional auch: Nährstoffkreisläufe (spricht für Biogas-Nutzung)
- Keine Agro-Gentechnik
- Luftreinhaltung / Umweltschutz beachten
- Wem gehört die Biomasse-Energie?
 lokal und kleinregional den Produzenten und BürgerInnen

Zusatz-Kriterien für BioE-Dörfer

- Biomasse-Nutzung mit hoher Effizienz, Energieeinsparung / Bedarfsverringerung)
- mit anderen erneuerbaren Energien kombinieren (Biomasse-E sparen)
- Überschüssige Biomasse-Energien aus ländlichem Raum für Städte (Brennstoff, Strom)
- ökonomische Strukturen: Quelle des Kapitals, ökologische Kapitalanlage, EEG, Gewinn
- organisatorische Strukturen : Genossenschaften, Bürgergesellschaften
- Standortfaktoren: Wo, Transporte, Schall, Wärmenutzung
- soziale Aspekte: viele Eigner lokal-kleinregional u.a.m., Lasten-Nutzen-Verteilung
- **Gerechtigkeitsfragen**: BiomasseLieferant-EnergieErzeuger, Steuern, Düngewert
- und ...

BioEnergie-Stadtteile in Freiburg?

- Überraschung:
- Es gibt (fast) welche! Mit erheblichenTeil-Versorgungen:
- FR-Landwasser Deponiegas-BHKW. Tendenz abnehmend
- FR-Vauban Hackschnitzel-HW +etwas BHKW, etwas Pellets
- kleine Quartiere Stadtbau: Biodiesel-BHKW, +Pelletheizwerk
- Auch erwähnenswert:
- Einzelobjekte größtes: BKF Biomüllvergärung FR+B-H BHKW
- 36.000 t Bioabfall/J für ca. 15.000 t Kompost + 4 Mio. Nm² Biogas.
- BHKW 1,4 MWel, Stromerzeugung 8 Mio kWh/J

BioEnergie-Stadtteile in Freiburg?

Weitere können folgen IDEE ECOtrinova/Löser 22.6./29.11.08

- 1. die östlichen Stadtteile
- Kappel, Ebnet, Günterstal, Littenweiler +?
 - i.w. auf Holzpellet-Basis (Buchenbach, statt zu exportieren;
 - größere Nahwärme; Ziel mittelfristig als (B)HKWs, PH als 1 "Kern"?
- 2. die westlichen Teilorte:
- Munzingen, Tiengen, Opfingen, Waltersh.
- i.w. landwirt. Basis incl. Weinbau (Biogas), Straßenbegleitgrün
- 3. andere Stadtteile in kleinem, aber wachsendem Umfang :
- z.B. FR-Wiehre nach Modell ECOtrinova: Pellets; Biomethan

Direktsaat -schützt vor Erosion und spart Energie

Gärrest ist idealer Volldünger – spart Mineraldünger ein!

Gliederung

- (2) Ist der Energiepflanzenbau mit ökologischen Leitlinien vereinbar?
- (3) Idealtypischer Energiepflanzenbau unsere Hypothesen zu Projektbeginn
- (3) Beispiele aus der Umsetzung des Energiepflanzenbaus in Jühnde

Fruchtfolge

Pflanzenschutz

Düngung

Erträge

Zweikulturnutzung

(4) Ist Energiepflanzenbau auch energetisch sinnvoll?

Okologische Leitlinien beim Anbau von Energiepflanzen

Artenvielfalt - keine Monokultur

Pflanzenschutzmitteleinsatz minimieren

Möglichst keine Nitratauswaschung

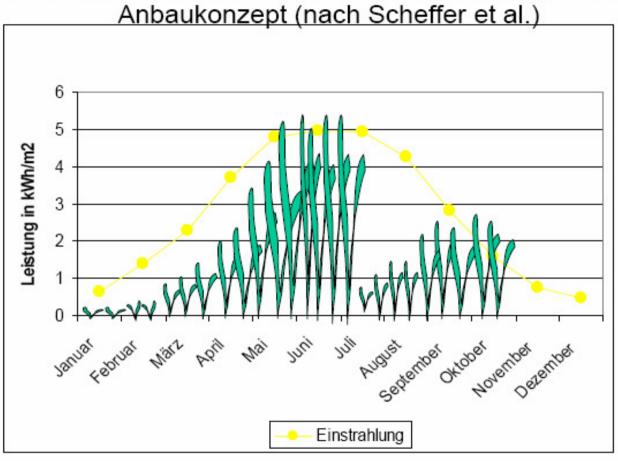
Keine Bodenerosion

Kreislaufwirtschaft durch Rückführung der Nährstoffe aus der Biogasanlage

Anbau ertragreich und energetisch sinnvoll

Führt Energiepflanzenanbau zu Monokulturen?

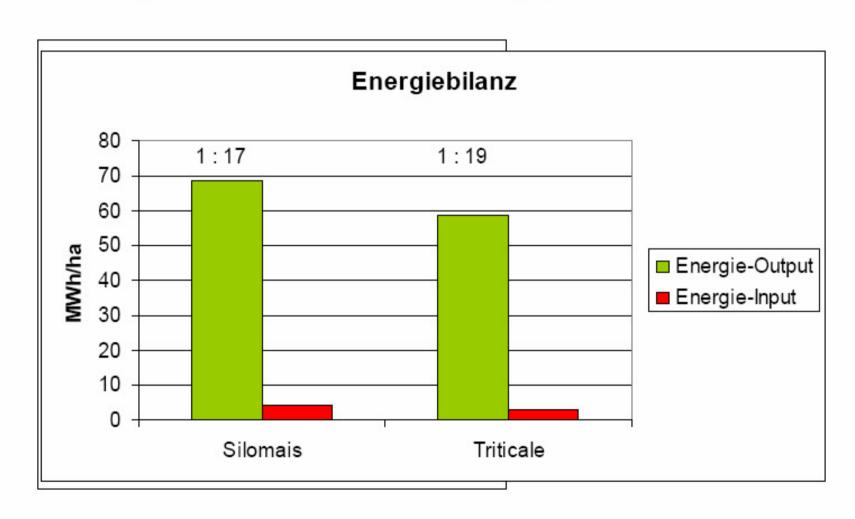
Eine Erweiterung der Fruchtfolgen mit neuen und alten Kulturarten ist möglich!



Arten- und Sortenmischungen - ertragreichere und gesündere Bestände

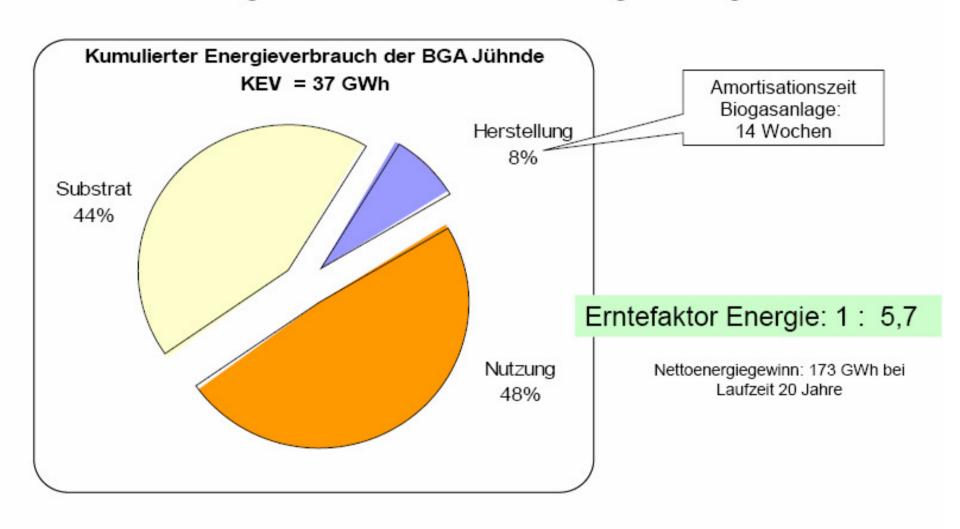
Höhere Bodenproduktivität durch Zweikulturnutzung: Witzenhäuser Anhaukonzent (nach Scheffer et al.)

Sommerroggen und Sonnenblumen als Zweitkultur Ertrag ca. 5 bis 6 t TM/ha


Wassergehalt bei der Ernte ca. 86 %

Ökolandbau: "Teller+Tank" möglich

- von Thünen-Institut (vTI-Institut) in Trenthorst :
- 2 Kulturen: "für Teller" +"für Tank" auf 1 Fläche
- Leindotter guter Partner für Erbsen, Lupinen, Weizen nahezu voller Erbsenertrag 3 t/ha +250 I Leindotteröl
- Beackern erfordert 80 -150 I/ha Pflanzenöl-Treibstoff
- Ökolandbau: Treibstoff-Autarkie ohne Flächenkonku.
- Überschuß möglich für hofexternen Einsatz
- Pflanzenöl Co-Produkt der Nahrungsmittelproduktion: enorm günstige Ökobilanz!



Energiebilanz des Jühnder Energiepflanzenanbaus

Energiebilanz der Jühnder Biogasanlage

Ökologische Leitlinien beim Anbau von Energiepflanzen erfüllt?

Artenvielfalt - keine Monokultur

Pflanzenschutzmitteleinsatz minimieren

Möglichst keine Nitratauswaschung

ノノノ

Keine Bodenerosion

111

Kreislaufwirtschaft durch Rückführung der Nährstoffe aus der Biogasanlage

111

Anbau ertragreich

Anbau energetisch sinnvoll

Treibhausgasbilanz, Nährstoffe, Schadstoffe

Diplom Geowissenschaftler Benedikt Sauer

Pro Jahr in Jühnde produzierte und genutzte kWh		Benötigte CO ₂ -Äquivalent in t für die Erzeugung der Energie	
		Bioenergiedorf	"normal"
Strom	5.200.000	625	3.123
	kWh _{el}	Biogasenergieerzeugung gesamt	Strom-Mix-DE 2005
Wärme	3.200.000	25	1.198
Abwärme BHKW +	kWh _{th}	ннѕнѡ	Öl-Heizung-DE-2000
Holzhackschnitzel- Heizwerk		Nahwärmenetz	
Summe		650	4.321

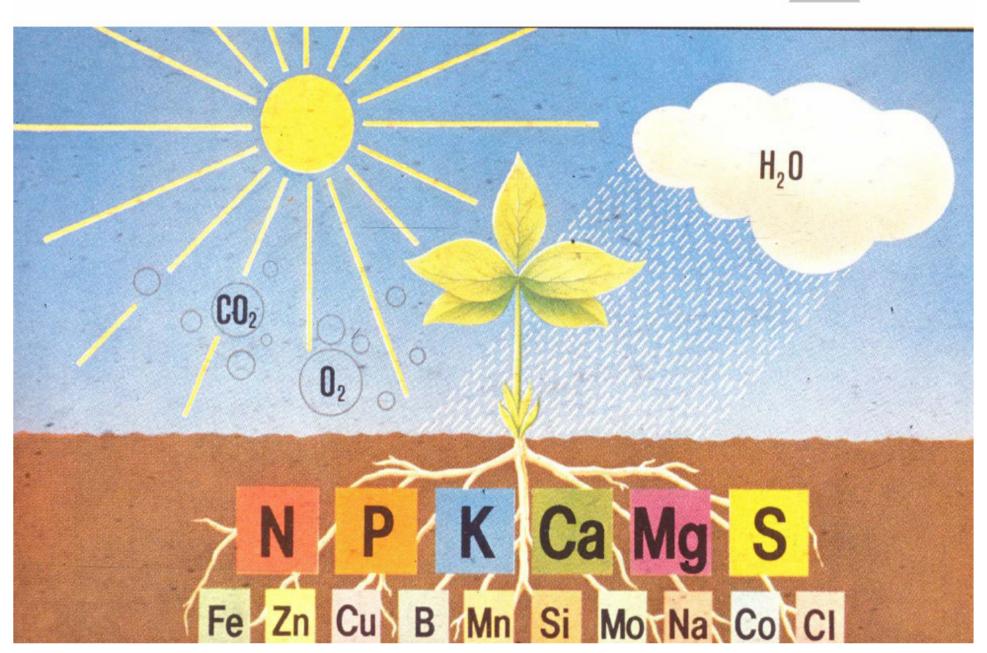
berechnet mit: Globales Emissions-Modell Integrierter Systeme (GEMIS) Version 4.42

Diplom Geowi. Benedikt Sauer

→ Das Bioenergiedorf Jühnde vermeidet jedes Jahr: 3.671 Tonnen CO₂-Äquivalente

Ein offenes Gärrestelager?

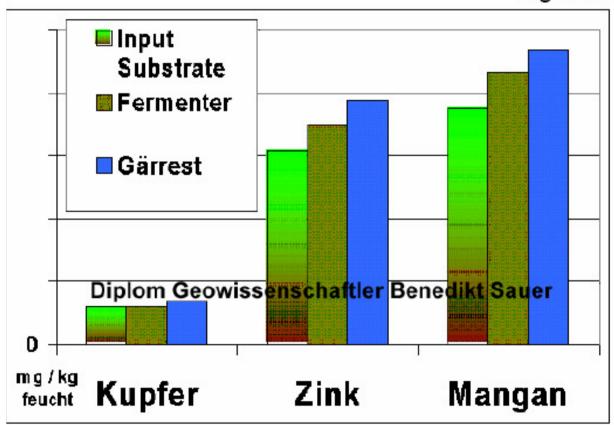
Investitionssumme ist etwas geringer, aber:


Restgaspotential verpufft in die Umwelt, somit gehen etwa 10 % der gesamten Energieproduktion des BHKW s verloren.

Gleichzeitig tragen jährlich etwa 2.200 t CO₂-Äquivalente zum Treibhauseffekt bei. Pro Jühnder würde der eingesparte Wert von 8,3 t auf 3,3 t sinken.

Fotomontage Benedikt Saue - Projektgruppe Bioenergiedörfer -

Interdisziplinäres Zentrum für Nachhaltige Entwicklung der Universität Göttingen
- Projektgruppe Bioenergiedörfer -

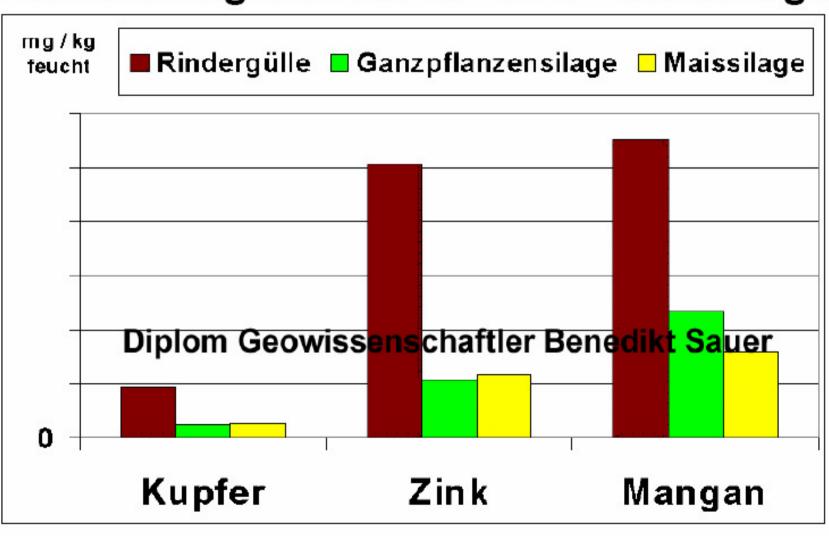


Nährstoffe und Schadstoffe

Aufkonzentration beim Gärprozess

ergibt eine kleine "Düngerfabrik"

Bei der Biogasbildung reichern sich alle untersuchten Elemente um 20 – 30 % an!


Ausnahme:

Kohlenstoff sinkt, da es aus ins Biogas übergeht.

aber dies birgt auch das Risiko der Schadstoffanreicherung – insbesondere bei der Zugabe von Spurenelementcocktails

Elementvergleich Gülle - GPS - Maissilage

geben uns die Chance einige Mängel ohne Zugabe von Gülle oder Spurenelementcocktails auszugleichen.

Aber: Keine der bislang untersuchten Energiepflanzen liefert alle Spurenelemente in erhöhter Konzentration

Folglich ist eine Zunahme der Artenvielfalt an Bioenergiepflanzer gut für Anlagenbetreiber, Natur und Gesellschaft